www.collegeprozheh.ir کالج پروژه

Web Browsing Performance of

Wireless Thinclient Computing
ABSTRACT

Web applications are becoming increasingly popular for mobile wireless systems. However, wireless networks can have high packet loss rates, which can degrade web browsing performance on wireless systems. An alternative approach is wireless thin client computing, in which the web browser runs on a remote thin server with a more reliable wired connection to the Internet. A mobile client then maintains a connection to the thin server to receive display updates over the lossy wireless network. To assess the viability of this thin-client approach, we compare the web browsing performance of thin clients against fat clients that run the web browser locally in lossy wireless networks. Our results show that thin clients can operate quite effectively over lossy networks. Compared to fat clients running web browsers locally, our results show surprisingly that thin clients can be faster and more resilient on web applications over lossy wireless LANs despite having to send more data over the network. We characterize and analyze different design choices in various thin client systems and explain why these approaches can yield superior web browsing performance in lossy wireless networks.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of Systems— Reliability, Availability, and Serviceability

General Terms

Experimentation, Measurement, Performance, Reliability

Keywords

thin-client computing, web performance, wireless and mobility

1. INTRODUCTION

The popularity of web applications and the increasing availability of wireless networks are fueling a growing proliferation of wireless and mobile computing devices. Furthermore, wireless thin

To appear in the Proceedings of Twelfth International World Wide Web Conference (WWW2003)

client computing systems are also beginning to emerge. A thinclient computing system consists of a server and a client that communicate over a network using a remote display protocol. The protocol allows graphical displays to be virtualized and served across a network to a client device, while application logic is executed on the server. Using the remote display protocol, the client transmits user input to the server, and the server returns screen updates of the user interface of the applications from the server to the client. Examples of popular thin-client platforms include Citrix MetaFrame [11, 22], Virtual Network Computing (VNC) [27] and Sun Ray [30, 34]. The remote server typically runs a standard server operating system and is used for executing all application logic.

Because thin-client systems run the program logic on faster remote servers, the client only needs to be able to display and manipulate the user interface. Clients can then be simpler devices, reducing energy consumption and extending battery life, which is often the primary constraint on the benefits of untethered Internet access with wireless devices. Thin-client users can access applications with heavy resource requirements that are prohibitive for typical mobile systems with low processing power.

While wireless thin client computing offers potential benefits, wireless networks can have high packet loss rates, which may degrade the performance of thin clients that require network access to a server at all times. For instance, packet loss in Wi-Fi (IEEE 802.11) networks [3, 14] can result from being out of range of access points or interference from physical impediments or other electronic devices. Furthermore, when it comes to web applications, the common belief is that web content should be delivered directly to a web browser running locally on the client to achieve the best web browsing performance rather than running the web browser on a remote server and relaying the web browser’s display through a thin-client interface via a remote display protocol.

In this paper, we challenge this conventional wisdom. We explore the possibility that a remote thin server acting as a proxy web client running a web browser with a superior connection to the web server can allow a thin client to deliver a better web browsing experience than a mobile fat client on a wireless network that may have less than ideal network conditions. We use the term fat client to refer to systems that execute applications such as a web browser using local client computing resources. Figure 1 contrasts the operation of a wireless fat client versus a wireless thin client in the context of web browsing.

[image: image2.jpg]Platform

Display Encoding

Screen Updates

Compression and Caching

Max Display Depth

Trausport Profocel

Citnix vel graphics | Server-push. lazy RLE. RAM cache, disk cache | 8-bit color TCPIP
MetaFrame
(acayis
2D draw primitives | Client-pull. lazy updates between | Hextile (2D RLE) 24-Dit color TCPIP
client requests discarded
SunRayT | 2D draw primitives | Server-push, eager None 24-bit color TDPIP

Table 1: Thin-client computing platforms.

Because the importance of thin-client computing will only continue to increase with the growing proliferation of wireless client devices, it is crucial to determine the effectiveness of thin-client computing in wireless networks on the kind of web applications that users are already using and will increasingly be using in the future. To assess the limits of wireless thin-client computing over lossy wireless networks, we have characterized the design choices of underlying remote display technologies and network protocols used and measured the impact of these choices on the performance of thin-client systems in Wi-Fi network environments, specifically IEEE 802.11b [3, 14]. For our study, we considered a diversity of design choices as exhibited by three popular thin-client systems in use today: Citrix MetaFrame, VNC, and Sun Ray. These platforms were chosen for their popularity, performance, and diverse design approaches. We conducted our experiments based on 802.11b because of its widespread use for wireless LANs. We focus on evaluating these thin-client platforms with respect to their performance on web browsing because of the importance of web applications as characterized by their widespread use. Previous studies show that web traffic constitutes the overwhelming majority of traffic in wireless networks [6, 17, 36]. We identified and isolated the impact of lossy wireless LAN environments by quantifying and comparing the performance of thin-client systems against fat clients that run web applications directly on the client. We consider the performance of these systems for a wide range of packet loss rates as exhibited in 802.11b networks. Because many thin-client systems are proprietary and closed source, we obtained our results using slow-motion benchmarking [25], a non-invasive measurement technique we developed that addresses some of the fundamental difficulties in previous studies of thin-client performance. Our results show that thin clients can operate effectively over lossy networks, but that performance can vary widely. More surprisingly, our results show that thin clients can be faster and more resilient on web applications than fat clients in wireless LANs, even though they send more data than fat clients using HTTP. We characterize and analyze different design choices in various thin-client systems to explain why these approaches can yield superior web browsing performance in lossy wireless networks.

Our results demonstrate that the fundamental characteristics of the remote display approach used in thin-client systems is a key factor in achieving better web browsing performance. This paper is organized as follows. Section 2 gives an overview of our slow-motion measurement methodology and details the experimental test bed and application benchmarks we used for our study. Section 3 describes the measurements we obtained on both fat-client and thin-client systems in lossy network environments. Section 4 provides an interpretation of the experimental results and examines how they relate to the use of different remote display mechanisms in thin-client systems. Section 5 discusses related work. Finally, we present some concluding remarks and directions for future work.

2. EXPERIMENTAL DESIGN

The goal of our research is to compare the web browsing performance of thin-client systems against traditional fat clients to assess their performance and utility in 802.11b environments. To explore a range of different design approaches, we considered three popular thin-client platforms: Citrix MetaFrame 1.8 for Windows 2000, VNC v3.3.2 for Linux, and Sun Ray I with Sun Ray Server Software 1.2 10.d. In this paper, we also refer to Citrix Metaframe by Citrix ICA (Independent Computing Architecture), which is the remote display protocol used by the Citrix platform. As summarized in Table 1, these platforms span a range of differences in the encoding of display primitives, policies for updating the client display, algorithms for compressing screen updates, caching mechanisms, supported display color depth, and transport protocol used. To evaluate their performance, we designed an experimental network testbed and various experiments to exercise each of the thin-client platforms on single-user web browsing workloads. Section 2.1 introduces the non-invasive slow-motion measurement methodology we used to evaluate thin-client performance. Section 2.2 describes the experimental testbed we used. Section 2.3 discusses the mix of web application benchmarks used in our experiments.

2.1 Measurement Methodology

Because thin-client systems are designed and used very differently from conventional fat-client systems, quantifying and measuring their performance on web applications can be difficult. In traditional fat-client systems, applications run locally, and the processing unit is tightly coupled with the display subsystem so that the display updates resulting from executing the application are rendered synchronously. In thin-client systems, the application logic executes on a remote server machine, which sends only the display updates over a network to be rendered on the client’s screen. The application processing unit is completely decoupled from the display subsystem; therefore, the display updates visible on the client side may be asynchronous with the application events. To benchmark a conventional system, one can simply script a sequence of application events and let the system under test execute the script as fast as it can. The result will then generally correlate with the user experience. For example, Ziff-Davis Publishing’s i- Bench is a benchmark that works in this manner to measure web browsing performance by downloading a Javascript-controlled series of web pages one after another. Each web page request is made as soon as the browser reports the current page is loaded. However, because of the lack of synchronicity between the application processing unit and the display subsystem in thin-client systems,

[image: image1.jpg]Fat Client Thin Client
W Server W Server
W Server W Server WW Server W Server
(| [FTTP serer] [FITP Server]
Wired
Thin Server
Wired
Thin Server
Wired
w >
a2t 02410
Wireiess Wireiess
Fat Clent Thin Clent
Thin Cient

Figure 1: Wireless fat client vs. wireless thin client.

Benchmarks such as i-Bench that were designed for conventional fat client systems cannot be used effectively to measure the userperceived performance on thin-client systems. Running a conventional benchmark on a thin-client system may only test the remote server’s ability to execute the benchmark application while ignoring the visual experience of the user. With i-Bench, since the web browser runs on a remote server machine in thin-client systems, downloading web pages to a web browser in a rapid-fire manner may result in measuring only the remote server’s ability to download web objects and not reflect the latency involved in relaying the display of the web pages to the thin client for the user to see. Some thin-client systems may simply be overwhelmed and unable to catch up in rendering the display updates, while some thin-client systems may actively merge or even discard some display updates in an effort to synchronize the display events with the application events. Either way, the conventional benchmarks will not accurately account for the user’s visual experience, and thus report a meaningless measure of performance. To address this problem, we previously developed slow-motion benchmarking and employ this methodology in this study to evaluate thin-client and fat-client web performance. A more in-depth discussion of this technique is presented in [25]. We provide an overview of slow-motion benchmarking here and we used it to measure web performance in lossy network environments. Slowmotion benchmarking employs two techniques to obtain accurate measurements: non-invasive monitoring of network activity and using slow-motion versions of web application benchmarks. We monitored client-side network activity to obtain a measure of user-perceived performance based on latency. Since we could not directly peer into the proprietary thin-client systems, our primary measurement technique was to use a packet monitor to capture the network traffic. The network traffic is a direct manifestation of system activity for fat clients running a web browser as well as thinclient systems relaying display information and user input. For example, as soon as a GET request is sent from a fat client to the web server, a packet is observed, and the network traffic will not cease until the client receives the last HTTP packet corresponding to the requested web page. In the case of thin-client systems, the thin server will begin to send packets to the thin client as soon as there is even a slight change in the display, and the packet transmission will continue until the display update is complete. From the packet records, we can extract the latency corresponding to the system activities that yielded the packets. To account for the delays caused by retransmission of packets in the lossy network, we monitored the network traffic on both the client-side and the server-side.

Monitoring the packets only on just the client-side is inadequate, because with thin-client systems, the server may initiate the network activity corresponding to a display update. If the initial packet is dropped and retransmitted, there will be some delay before the client-side packet monitor sees the initial packet. The latency extracted from the packet records does not include the time from the moment the thin client receives the display update information to the moment all the pixels are rendered onto the screen. Similarly,
for the fat clients running a web browser, this measurement technique does not account for the time from the moment the client receives the web page data to the moment the page is fully rendered on screen. However, previous results indicate that the clientside display rendering time for web browsing is relatively small and does not change in any significant way as a result of different network environments [25].

We employed slow-motion versions of web application benchmarks to provide a measure of user-perceived performance based on the visual quality of display updates. Monitoring network activity provides a measure of the latency of display updates, but it does not provide a sufficient measure of the overall quality of the performance if not all of the display updates are actually reaching the client. To address this problem, we altered the web benchmark applications by introducing delays between the web pages, so that the display update for each component is fully completed on the client before the server begins processing the next display update. We monitored network traffic to make sure the delays were long enough to provide a clearly demarcated period between display updates where client-server communication drops to the idle level for that platform. We then process the packet capture data to obtain the latency and data transferred for each web page, and obtain overall results by taking the sum of these results. Section 2.3 describes in further detail how web application benchmarks were delayed for our experiments.

Our combined measurement techniques provide three key benefits. First, the techniques ensure that we can determine if display events reliably complete on the client so that packet captures from network monitoring provide an accurate measure of system performance. Ensuring that all clients display all visual components in the same sequence provides a common foundation for making comparisons among thin-client systems. Second, the techniques do not require any invasive modification of thin-client systems. Consequently, we are able to obtain our results without imposing any additional performance overhead on the systems measured. More importantly, the techniques make it possible for us to measure popular but proprietary thin-client systems such as ICA and SunRay. Third, the techniques provide a common methodology for measuring and comparing the performance of both thin-client and fat-client systems.
1

