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Voltage Analytics for Power Distribution Network
Topology Verification

Guido Cavraro, Vassilis Kekatos, Senior Member, IEEE, and Sriharsha Veeramachaneni

Abstract—Distribution grids constitute complex networks of
lines oftentimes reconfigured to minimize losses, balance loads,
alleviate faults, or for maintenance purposes. Topology monitor-
ing becomes a critical task for optimal grid scheduling. While
synchrophasor installations are limited in low-voltage grids,
utilities have an abundance of smart meter data at their disposal.
In this context, a statistical learning framework is put forth
for verifying single-phase grid structures using non-synchronized
voltage data. The related maximum likelihood task boils down
to minimizing a non-convex function over a non-convex set.
The function involves the sample voltage covariance matrix and
the feasible set is relaxed to its convex hull. Asymptotically
in the number of data, the actual topology yields the global
minimizer of the original and the relaxed problems. Under a
simplified data model, the function turns out to be convex, thus
offering optimality guarantees. Prior information on line statuses
is also incorporated via a maximum a-posteriori approach. The
formulated tasks are tackled using solvers having complementary
strengths. Numerical tests using real data on benchmark feeders
demonstrate that reliable topology estimates can be acquired
even with a few smart meter data, while the non-convex schemes
exhibit superior line verification performance at the expense of
additional computational time.

Index Terms—Maximum likelihood; inverse covariance matrix
estimation; linearized distribution flow model.

I. INTRODUCTION

Low commercial interest together with the sheer coverage
of residential low-voltage grids have resulted in their limited
instrumentation. Traditionally, utility operators collect voltage,
current, and power readings only from a few grid points.
With the growing interest in integrating solar generation along
with demand-response and electric vehicle charging programs,
utilities need more refined models of their assets to accomplish
grid scheduling tasks. To this end and given the currently
prohibitive cost of installing synchrophasors on a wide scale,
data from advanced metering infrastructure (AMI) and power
inverters can provide useful grid information.

One such critical piece of information is the operational
structure of a grid. Power networks are built with line re-
dundancy for efficiency, reliability, and maintenance purposes.
Although operators know the available lines along with their
characteristics, the energized topology under which the grid
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operates at any given time may not be precisely known. At
the transmission level, the grid topology is typically acquired
using historical data, measurements, and the generalized state
estimator [1]. Detecting sudden single- and double-line out-
ages via efficient enumerations has been suggested in [2],
while outages of multiple lines are unveiled via the sparse
overcomplete representation of [3]. Given power injections
across the network over multiple times, grid connectivity is
recovered via a blind matrix factorization in [4]. A Gaussian
Markov random field has been postulated over bus voltage
angles to localize transmission grid faults [5]. Instead of using
electrical quantities, power system topologies are tracked using
publicly available electricity prices in [6].

Focusing on distribution grids, reference [7] exploits the
time delays of power line communication signals to reveal
the grid structure. The topology recovery scheme of [8] relies
on the properties of the inverse covariance matrix of bus
voltage magnitudes. After developing a linearized distribution
grid model, reference [9] generalizes the previous schemes
to voltage data from multiple feeders, correlated power injec-
tions, and grids with variable resistance-to-reactance ratios.
The graph recovery algorithms of [9] have been extended
to incorporate covariances of power injections from terminal
nodes [10]. Grid topology recovery has been tackled using
graphical models by fitting a spanning tree based on the mu-
tual information of voltage data in [11]. The aforementioned
approaches rely on the ensemble rather than sample moments
of meter data. In a grid of N buses, the sample covariance
of voltage data becomes invertible after collecting at least N
data. If meters report every few minutes, the sample covariance
can be inverted only after some hours. Even then, its inverse
would deviate substantially from its ensemble counterpart.

Topology inference methods relying on synchrophasor data
have also been suggested for distribution grids. The scheme of
[12] selects the topology attaining the best least-squares fit in
an exhaustive fashion whose complexity grows exponentially
in the number of configurations. A data-driven algorithm for
detecting switching events based on topology signatures has
been reported [13]. A sparse linear model capturing the voltage
dependence between every node and all other nodes is sought
via `1-penalized regression in [14]; yet the per-node models
may not agree. In [15], the bus admittance matrix is found
via linear regression and its observability is characterized
presuming all non-metered buses do not inject power. Albeit
synchrophasors for distribution grids are underway, their cur-
rent cost inhibits wide adoption.

The task of verifying grid topologies using non-
synchronized voltage data is considered here. Our contribution
is three-fold. First, topology verification in single-phase grids
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is posed as a maximum likelihood (ML) problem involving
the sample covariance matrix of voltage data. After reviewing
the grid model in Section II, the grid topology is captured by
a binary vector (Section III-A). The associated non-convex set
is relaxed to its convex hull and a stationary point of the non-
convex likelihood function is found via gradient projection.
Asymptotically in the number of data, the true topology con-
stitutes the global minimizer for both problems. Second, the
novel learning schemes simplify if lines are assumed to exhibit
identical resistance-to-reactance ratios, see also [8]. By further
ignoring noise, the likelihood function becomes convex, and
hence, numerical bounds on the suboptimality of the relaxation
are obtained (Section III-B). Lastly, possible prior information
on the status of individual lines is incorporated in terms of a
maximum a posteriori (MAP) estimator (Section IV-C). The
numerical tests of Section V using actual data on benchmark
feeders corroborate our findings, and conclusions are drawn
in Section VI.

Regarding notation, lower- (upper-) case boldface letters
denote column vectors (matrices), with the exception of the
line complex power flow vector S. Calligraphic symbols are
reserved for sets. Symbol > stands for transposition and z̄
is the complex conjugate of z. Vectors 0 and 1 are the
all-zero and all-one vectors. Symbol ‖x‖2 denotes the `2-
norm of x and dg(x) defines a diagonal matrix having x
on its diagonal. A symmetric positive (semi)definite matrix
is denoted as X � 0 (X � 0).

II. MODELING PRELIMINARIES

The proposed topology verification schemes build on the
approximate linearized model for distribution grids that are
briefly reviewed next. A radial single-phase grid having N+1
buses can be represented by a tree graph T = (No,L), whose
nodes No := {0, . . . , N} correspond to buses and its edges
L to distribution lines. The tree is rooted at the substation
bus indexed by n = 0, while every non-root bus n ∈ N :=
{1, . . . , N} is connected to its unique parent bus πn via line
n. The grid is modeled by the branch flow equations [16]

sn =
∑
k∈Cn

Sk − Sn + Inzn (1a)

vn = vπn − 2 Re[z̄nSn] + In|zn|2 (1b)

|Sn|2 = vπn
In (1c)

where zn = rn + jxn is the impedance of line n; In is the
squared current magnitude on line n; Sn is the complex power
flow sent on line n from the parent node πn; and Cn is the
set of children buses for n. Further, vn and sn = pn+ jqn are
the squared voltage magnitude and power injection at bus n.
Equation (1a) follows from conservation of power; equation
(1b) describes the drop in squared voltages along line n [16];
and (1c) stems from the definition of complex power flow.

Since the nonlinearity in (1c) complicates power flow cal-
culations, distribution grids are sometimes studied using the
linear distribution flow (LDF) model [16]. The latter follows
from (1) upon dropping the last summands in the right-hand
sides (RHS) of (1a)–(1b). It can also be derived assuming
voltage magnitudes to be close to unity and voltage angle

differences between neighboring buses to be small [9]; or
alternatively, via a first-order Taylor series approximation of
power injections as functions of voltages [17].

The topology of a grid with N + 1 buses and L distri-
bution lines is captured by the branch-bus incidence matrix
Ã ∈ {0,±1}L×(N+1) that can be partitioned into its first
and the rest of its columns as Ã = [a0 A]. For a radial
grid (L = N), the reduced incidence matrix A is square and
invertible [18]. After ignoring losses, equations (1a)–(1b) can
be compactly expressed in matrix-vector form as [19]

s = A>S (2a)
Av = 2 Re[dg(z̄)S]− a0v0 (2b)

where s = p+jq is the vector of complex nodal injections; S
is the vector of complex power flows; z = r+jx is the vector
of line impedances; and v0 is the squared voltage magnitude
at the substation. Substituting S = A−>s from (2a) in (2b),
and exploiting the fact that a0 + A1 = 0 (due to Ã1 = 0),
the vector v collecting the squared voltage magnitudes at all
buses in N can be approximated as [20], [9], [17]

v ' Rp + Xq + v01N (3)

where the N ×N matrices R and X are defined as

R := 2(A> dg−1(r)A)−1 (4a)

X := 2(A> dg−1(x)A)−1. (4b)

The RHS of (3) has been shown to underestimate the actual
squared voltage magnitudes with the bias depending on In’s;
see [21]. Numerical tests report voltage magnitude approxi-
mation errors less than 0.005 pu; see [19, Fig. 6], [22].

Squared voltage magnitudes are collected at all nodes with
a sampling period of Ts. Samples are indexed by the subscript
t = 0, . . . , T . Upon applying (3) over two successive samples,
the fluctuations in squared voltage magnitudes ṽt := vt−vt−1
caused by perturbations in power injections p̃t := pt − pt−1
and q̃t := qt − qt−1 follow the model

ṽt = Rp̃t + Xq̃t + nt (5)

where the vector nt captures measurement noise, the approx-
imation error introduced by LDF, and modeling inaccuracies.

III. TOPOLOGY VERIFICATION

Power grids are built with redundancy in line infrastructure.
This redundancy improves system reliability against failures
or during scheduled maintenance, while grids are regularly
reconfigured for loss minimization [16]. Therefore, the set of
energized lines L is a subset of the existing lines denoted by
the set Le with |Le| = Le, and L ⊆ Le. For example, line
742-744 in Fig. 1 belongs to Le but not to L.

To verify grid topologies using smart meter data, let us
express (R,X) defined in (4) in terms of the active lines as

R =

(∑
`∈L

1

2r`
a`a
>
`

)−1
and X =

(∑
`∈L

1

2x`
a`a
>
`

)−1
(6)

where a>` is the `-th row of A. By slightly abusing notation,
matrix A here has been augmented to include both active and
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Fig. 1. Line infrastructure for the IEEE 37-bus feeder benchmark.

non-energized lines. Let us introduce the variable b` for line `
taking the values b` = 1 if ` ∈ Le; and b` = 0 otherwise.
Collecting b`’s in the binary Le–length vector b, matrices
(R,X) can be written as

R(b) =

(∑
`∈Le

b`
2r`

a`a
>
`

)−1
,X(b) =

(∑
`∈Le

b`
2x`

a`a
>
`

)−1
where now the summations extend over all lines in Le. Under
this representation, verifying the grid topology entails finding
b from meter data. Meter readings are collected by the utility
over T time slots. Given the current and forthcoming com-
munication capabilities of the smart metering infrastructure,
samples are collected every Ts = 5 or 15 minutes. Within one
hour, at most T = 4 to 12 voltage vectors can be recorded.

Smart meter data comprise voltage magnitudes, active pow-
ers, and power factors among other quantities. Nonetheless,
a smart meter monitors a single household, which may not
necessarily correspond to a bus. The nodes of low-voltage
grids are typically mapped to pole transformers, each one
serving 5 to 10 residential costumers. Hence, power readings
from meters may not be readily used. Instead, we statistically
characterize power injections and rely on the second-order
statistics of voltage readings to verify the grid topology.

A. Verification under a detailed data model

To arrive at a tractable statistical formulation, differential
injection data (p̃t, q̃t) are assumed to be zero-mean random
vectors with covariance matrices Σp := E[p̃tp̃

>
t ], Σq :=

E[q̃tq̃
>
t ], and Σpq := E[p̃tq̃

>
t ]. The noise vector nt in (5)

is modeled as zero-mean independent Gaussian with variance

σ2
n, that is nt ∼ N (0, σ2

nI). Under these assumptions and from
(5), the differential squared voltage magnitudes ṽt (hereafter
termed voltage data for brevity) are also zero-mean with
ensemble covariance matrix explicitly parameterized by the
line indicator vector b as

Σ(b) = R(b)ΣpR(b) + X(b)ΣqX(b)

+ R(b)ΣpqX(b) + X(b)Σ>pqR(b) + σ2
nIN . (7)

Based on the preceding modeling, the topology verification
problem is stated next.

Definition 1. The task of topology verification amounts to
finding the subset L of active distribution lines given:

(i) the distribution line infrastructure {a`}`∈Le
;

(ii) the line parameters {r`, x`}`∈Le
;

(iii) the covariance matrices Σp, Σq , Σpq ; and
(iv) voltage data {ṽt}Tt=1 over T time instances.

Different from the task of topology identification where both
the existing lines and their impedances are unknown [17], [9],
in topology verification the utility operator knows the existing
line infrastructure. Here, the operator collects voltage readings,
but power injections are described only through their first- and
second-order moments. This is to cater the scenario where
smart meter data from one house can be used to trace back the
voltage magnitude at the related pole transformer. The net in-
jection on the pole transformer serving 5-10 additional houses
however cannot be inferred. The covariances can be estimated
from historical data. Postulating structure on covariances (e.g.,
diagonal matrices) reduces the number of parameters.

To build a statistical model of voltage data, we invoke
contemporary variants of the central limit theorem (CLT)
and postulate that the probability density function (pdf) of
each random vector ṽt converges asymptotically in N to a
multivariate Gaussian pdf, even if (p̃t, q̃t) are not Gaussian.

Remark 1. Note that ṽt =
∑N
n=1(p̃t,nrn + q̃t,nxn), where

(p̃t,n, q̃t,n) are the n-th entries of (p̃t, q̃t) and (rn,xn) are
the n-th columns of (R,X), accordingly. The N -dimensional
vector ṽt is therefore expressed as the sum of N independent
random vectors. Different from the classical multivariate CLT,
the dimension of ṽt grows with the number of its summands.
Nevertheless, its pdf can still be approximated by a Gaussian
pdf for bounded power injections [23, Sec. 2].

The statistical tests based on actual data in Sec. V validate
this assumption. Thus, the pdf of ṽt can be approximated as

p(ṽt; b) =
|Σ(b)|−1/2

(2π)N/2
exp

(
−1

2
ṽ>t Σ−1(b)ṽt

)
.

To fully characterize the collected data {ṽt}Tt=1, their joint
pdf should be provided. To that end, assuming independence
across time is convenient and computationally tractable. In
fact, the normalized autocorrelation functions depicted in
Fig. 3 demonstrate that voltage data are relatively uncorre-
lated across time, especially for sampling periods larger than
Ts = 5 min. Due to Gaussianity, uncorrelatedness implies
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independence. Therefore, the joint pdf for the entire voltage
dataset becomes p({ṽt}Tt=1; b) =

∏T
t=1 p(ṽt; b), or

p({ṽt}Tt=1; b) =
|Σ(b)|−T/2

(2π)NT/2
exp

(
−1

2

T∑
t=1

ṽ>t Σ−1(b)ṽt

)
.

Upon observing the data {ṽt}Tt=1, function p({ṽt}Tt=1; b)
becomes the likelihood function of the unknown line indicator
vector b. Adopting a maximum likelihood (ML) approach, the
sought b can be found as the maximizer of p({ṽt}Tt=1; b), or
equivalently, as the minimizer of − log p({ṽt}Tt=1; b). After
scaling by 2/T and ignoring constant terms, the negative log-
likelihood function is

f(b) := log |Σ(b)|+ 1

T

T∑
t=1

ṽ>t Σ−1(b)ṽt.

Exploiting the linearity of the trace operator Tr(·), the function
f(b) can be equivalently expressed as

f(b) = log |Σ(b)|+ Tr(Σ−1(b)Σ̂) (8)

where | · | denotes the matrix determinant and Σ̂ is the sample
covariance matrix of the voltage data

Σ̂ :=
1

T

T∑
t=1

ṽtṽ
>
t . (9)

Function f(b) consists of two terms. The term Tr(Σ−1(b)Σ̂)
aggregates all the information from voltage data and can be
understood as a data-fitting term. The term log |Σ(b)| on the
other hand acts as a regularizer guarding Σ(b) within the
positive definite matrix cone and away from singularity [6].

Vector b can now be found by minimizing

f? := min
b∈B,1>b=L

f(b) (10)

where B := {0, 1}Le and the constraint 1>b = L fixes the
number of active lines to L. In a grid with N + 1 nodes,
requiring L = N in (10) enforces a radial structure. To see this,
note that the graph induced by any N edges not forming a tree
is not a connected graph. The corresponding reduced incidence
matrix A(b) is not full column-rank. Consequently, matrices
(R(b),X(b)) become singular and f(b) goes to infinity.

Solving (10) is non-trivial due to the binary constraints. The
set B can be surrogated by its convex hull Br := [0, 1]Le and
a lower bound on f? can be found by solving

f?r := min
b∈Br,1>b=L

f(b). (11)

The function f(b) can be shown to be non-convex in
general. A projected gradient descent (PGD) scheme with a
sufficiently small step size µ > 0 is guaranteed to converge
to a point b̌ satisfying the necessary optimality condition for
(11), that is [24, Prop. 6.1.3]

(∇f(b̌))>(b− b̌) ≥ 0 for all b ∈ Br and 1>b = L. (12)

After initializing b at some b0, the k-th PGD iteration reads

bk+1 := arg min
b∈Br,1>b=L

‖b− bk + µ∇f(bk)‖22. (13)

The projection in (13) can be handled either by a generic
linearly-constrained convex quadratic program; by the lambda
iteration method [1, Sec. 5.2.4]; or by dual ascent upon
dualizing the constraint 1>b = L. The gradient ∇f(b) is
calculated using standard matrix differential rules as shown in
the Appendix.

Lemma 1. The `-th entry of the gradient of f(b) is

∂f(b)

∂b`
= − 1

r`
a>` R(b)ΣpR(b)F(b)R(b)a`

− 1

x`
a>` X(b)ΣqX(b)F(b)X(b)a`

− 1

r`
a>` R(b)ΣpqX(b)F(b)R(b)a`

− 1

x`
a>` X(b)F(b)R(b)ΣpqX(b)a` (14)

where F(b) := Σ−1(b)−Σ−1(b)Σ̂Σ−1(b).

Consistent with the properties of the maximum likelihood
estimator (see [25]), the true line indicator vector minimizes
(10) and (11), when the number of data T grows to infinity;
see the Appendix for a proof.

Lemma 2. Let bo be the true line indicator vector. If the
sample covariance Σ̂ has converged to the ensemble covari-
ance Σ(bo), then bo is a stationary point of f(b) and global
minimizer for (10) and (11).

The PGD estimate b̌ may not lie in the original non-convex
set B. Then, a feasible vector b̂ can be heuristically obtained
by selecting the lines corresponding to the L largest entries
of b̌; by finding the minimum spanning tree on a graph
having b̌ as edge weights; or by choosing b̌ as the mean
of independent Bernoulli distributions used to draw a number
of line configurations from which the feasible one attaining
the smallest f(b) is returned as b̂. Obviously, it holds that
f? ≤ f(b̂) and f(b̌) ≤ f(b̂). Although b̂ yields reasonable
verification performance (see Sec. V), vector b̌ may not be a
global minimizer of (11) since f(b) is non-convex.

B. Verification under a simplified data model

To alleviate the issues with the non-convexity of f(b), we
alternatively pursue a simplified model for voltage data by
resorting to two assumptions [17]:

(a1) The resistance-to-reactance ratios α` := r`/x` are
identical for all lines, i.e., α` = α for all ` ∈ Le.

(a2) The noise term nt is negligible, or σ2
n = 0.

Regarding (a1), the ratios α`’s practically tend to lie within a
limited range [αmin, αmax] as listed on Table I. The parameter
α can be picked as the average or the median of the known
actual ratios α`’s. Ignoring the noise term simplifies consid-
erably the approach.

Under (a1)–(a2), the voltage data model in (5) simplifies as

ṽt = αXp̃t + Xq̃t. (15)

Defining Σα := α2Σp + Σq + α(Σpq + Σ>pq), the ensemble
covariance of the voltage data becomes

Σ̃(b) = X(b)ΣαX(b). (16)
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TABLE I
DISTRIBUTION LINE RESISTANCE-TO-REACTANCE RATIOS

Feeder αmin αmax mean std median
IEEE 34-bus 1.00 1.88 1.41 0.29 1.37
IEEE 37-bus 1.48 2.70 2.72 0.45 1.93
IEEE 123-bus 0.42 2.02 0.74 0.38 0.97

Using properties of the determinant and trace, the original
negative log-likelihood in (8) is surrogated by the function

f̃(b) := −2 log |X−1(b)|+Tr[X−1(b)Σ−1α X−1(b)Σ̂] (17)

which enjoys convexity as shown in the Appendix.

Lemma 3. The function f̃(b) is strictly convex over b ∈ RL+.

Based on the simplified data model of (15), the line indicator
vector can be recovered as the minimizer of

f̃? := min
b∈B,1>b=L

f̃(b). (18)

Again, to deal with the non-convexity of the feasible set,
function f̃(b) is now minimized over its convex hull instead

b̃ := arg min
b∈Br,1>b=L

f̃(b). (19)

Different from (11), the optimization in (19) is convex. Upon
replacing Σ(b), R(b), and r`, respectively by Σ̃(b), αX(b),
and αx` onto (14), the `-th entry of ∇f̃(b) becomes

∂f̃(b)

∂b`
=

1

x`
a>` [Σ−1α X−1(b)Σ̂−X(b)]a`, ∀` ∈ Le.

It is easy to verify that under the model of (15), Lemma 2
carries over to function f̃ . Precisely, if bo is the true line in-
dicator vector and Σ̂ has converged to the ensemble covariance
Σ̃(bo) = X(bo)ΣαX(bo) under the approximate model, then
∇f̃(bo) = 0. The latter together with the strong convexity of
f̃ imply that bo is the unique minimizer of (18) and (19).

The minimizer of (19) can be found by the PGD iteration

bk+1
r = arg min

b∈Br,1>b=L
‖b− bk + µ∇f̃(bk)‖22. (20)

The Frank-Wolfe (FW) or conditional gradient scheme is a
competing alternative for tackling (19); see also [26], [27].
The scheme is suitable for minimizing a differentiable convex
function over a compact set. Tailoring the FW iterates to the
problem at hand provides

b̆k+1
r ∈ arg min

b∈Br,1>b=L
b>∇f̃(bkr ) (21a)

bk+1
r = bkr + 2

k+2 (b̆k+1
r − bkr ). (21b)

The step in (21a) involves a linear program (LP) whose
minimizer can be found by simply setting the entries of b̆k+1

r

corresponding to the L smallest entries of ∇f̃(bkr ) to one,
and setting the remaining entries to zero. The FW scheme
converges sublinearly in O(1/k) iterations, while the PGD
scheme exhibits linear convergence [24]. Nonetheless, the LP
step of FW in (21a) is computationally cheaper than the costly
projection in (20). Practically, the FW scheme is preferred over
PGD when a low-accuracy solution suffices [27].

If the minimizer b̃ of (19) belongs to B, it is a minimizer
of (18) too. Otherwise, a suboptimal b′ can be obtained from
b̃ ∈ Br using the heuristics discussed earlier. In this case,
thanks to the convexity in (19), the suboptimality gap can be
bounded as f(b̃) ≤ f̃? ≤ f(b′); see also [28, Sec. 7.5].

Comparing the two approaches, the one in Sec. III-A relies
on the detailed model of (5) and fully exploits the line
data {r`, x`}. However, it entails a non-convex negative log-
likelihood f(b) that can be minimized only up to a point
satisfying (12). The approach of this section builds on the
simplified model of (15) requiring only {x`} and the approx-
imate common ratio α. Because the associated function f̃(b)
is convex, the relaxation in (19) can be solved to optimality
and with quantifiable gap from the non-convex task of (18).

IV. EXTENSIONS

Our learning toolbox is extended next to cope with meshed
topologies, disjoint feeders, and prior information on lines.

A. Meshed topologies
Up to this point, the underlying grid topology was presumed

to be radial. However, urban power distribution grids often-
times exhibit operationally meshed structures. For distribution
grids with L ≥ N , the model in (5) generalizes to [9], [17]

ṽt = 2(G+BG−1B)−1p̃t+2(B+GB−1G)−1q̃t+nt (22)

for the bus conductance and susceptance matrices

G := A> dg

({
r`

r2` + x2`

}
`

)
A (23a)

B := A> dg

({
x`

r2` + x2`

}
`

)
A. (23b)

It is not hard to show that for radial networks where L = N ,
matrix A is square and the model in (22) simplifies to (5).

The scheme of Sec. III-A can be extended to meshed
networks based on (22). The gradient of f(b) can be derived
by adopting the proof of Lemma 1 as outlined next. The
formulas of (28)–(29) carry over as long as R is substituted
by R̃ := 2(G + BG−1B)−1, and X is substituted by
X̃ := 2(B + GB−1G)−1. In this case however, the partial
derivatives in (30) are replaced by

∂R̃(b)

∂b`
= − 2r`

r2` + x2`
R̃(b)a`a

>
` R̃(b)

+
2r`

r2` + x2`
B(b)G−1(b)a`a

>
` G−1(b)B(b)

+
2x`

r2` + x2`
R̃(b)B(b)G−1(b)a`a

>
` R̃(b)

+
2x`

r2` + x2`
R̃(b)a`a

>
` G−1(b)B(b)R̃(b)

for all `. An analogous expression holds for ∂X̃(b)
∂b`

.
On the other hand, under assumptions (a1)–(a2), the matri-

ces in (23) simplify as G = 2α
α2+1X−1 and B = 2

α2+1X−1.
Simple algebraic manipulations show that (15)–(17) and the
schemes of Sec. III-B apply unaltered to meshed grids. This
point further justifies the benefit of adopting the approximate
model under (a1)–(a2).
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B. Disjoint feeders and multiple substation buses

Voltage readings may be collected from multiple radial feed-
ers or a meshed grid rooted at multiple substation buses [9].
These scenarios can be handled in a uniform fashion under
a simple modification. It is known that the nullity of the
Laplacian matrix L := Ã> dg−1(r)Ã, i.e., the number of
its zero eigenvalues, is equal to the number of the connected
components in the underlying graph [18]. Moreover, every
principal minor of L is strictly positive definite if the graph is
connected. By definition, the nullity of L coincides with the
nullspace dimension of Ã.

When the grid is a single connected feeder, then
dim(null(Ã)) = 1. Dropping any column of Ã provides a
full column-rank matrix. Recall that A is derived from Ã by
removing the column corresponding to the substation bus.

The idea extends naturally. If data are collected from differ-
ent feeders, the corresponding Laplacian can be transformed
under column- and row-permutations to a block diagonal ma-
trix whose diagonal blocks constitute the Laplacian matrices
of the connected grid. To guarantee the invertibility of the
individual Laplacians, the matrix A used in our schemes
is obtained from Ã by dropping the columns related to all
substation buses.

C. Incorporating prior information on lines

In meshed grids, the utility may not know the exact number
of active lines L. On the other hand, prior information on indi-
vidual lines being active could be known through a generalized
state estimator; current magnitude readings on transformers; or
commonly used grid configurations (e.g., seasonally). To cope
with these setups, a maximum a-posteriori (MAP) approach is
adopted. The indicator b` for line ` is modeled as a Bernoulli
random variable with given mean E[b`] = π`. The prior
probability mass function (pmf) for b` can be conveniently
expressed as Pr(b`) = πb`` (1 − π`)

1−b` . To ease modeling,
it is postulated that lines are active independently. Then, the
joint pmf for b is Pr(b) =

∏
`∈Le

Pr(b`) up to normalization
and its negative logarithm is

− log Pr(b) = −
∑
`∈Le

b` log π` + (1− b`) log(1− π`)

=
∑
`∈Le

b`β` − log(1− π`) (24)

where β` := log
(

1−π`

π`

)
for all ` ∈ Le.

The MAP estimate for b is defined as the vector maximizing
the posterior pdf p(b|{ṽt}Tt=1). By Bayes’ rule, the latter is
proportional to the product p({ṽt}Tt=1; b) Pr(b) scaled by the
inconsequential term p({ṽt}Tt=1). The MAP estimate can be
equivalently found by minimizing

− log p(b|{ṽt}Tt=1) = − log p({ṽt}Tt=1; b)− log Pr(b).

By collecting the given parameters β`’s in vector β and
ignoring constants, the latter leads to the problem

bMAP := arg min
b∈B

T
2 f(b) + β>b. (25)

If the simplified model of (15) is used in lieu of (5), the func-
tion f(b) in (25) is replaced by the convex f̃(b). Contrasted
to (18), the task in (25) leverages prior information on lines
• If line ` is likely to be active, then π` > 1/2 and β` < 0.
• If line ` is known to be active, then π` = 1 and β` = −∞,

thus forcing the `-th entry of bMAP to one.
• No prior on line ` entails π` = 1/2 and β` = 0.
• If all lines statuses exhibit the same mean πc, that is

E[b`] = π` = πc for ` ∈ Le, the linear term in the cost
of (25) becomes πc1>b. The latter can be interpreted as
the Lagrangian counterpart of (18).

The feasible set B can be again relaxed to Br. Lacking the
coupling constraint 1>b = L, the PGD update

bk+1 = arg min
b∈Br

‖b− bk + µ∇f(bk) + µβ‖22 (26)

decouples across lines and the `-th entry of bk+1 is found as

bk+1
` :=

[
bk` − µ

∂f(bk)

∂b`
− µβ`

]1
0

(27)

where [x]10 projects x onto the interval [0, 1].

V. NUMERICAL TESTS

The developed schemes were validated using the IEEE 37-
bus and 123-bus feeders depicted in Figures 1 and 2 [29].
Buses {150, 195, 251, 451} served as possible substations for
the IEEE 123-bus feeder. The feeders were modified to single-
phase using the process described in [21]. Zero-injection buses
were assigned loads uniformly randomly chosen between the
minimum and maximum bus loads provided by the benchmark.

Each bus hosted a uniformly random number of four to
ten houses. Data collected from the Pecan Street project over
January 1, 2013 were used as power profiles for houses with a
random assignment [30]. These net power profiles correspond
to residences with and without solar generation. Since the
dataset does not provide reactive loads, power factors were
drawn uniformly within 0.95 leading to 0.95 lagging for each
bus at every time interval. The load aggregates at each bus
were normalized so that their maxima matched the benchmark
nominal values. The PV inverters implemented the following
reactive control rule: if the generated active power exceeded
half the PV capacity, the inverter would absorb more reactive
power so that the inverter power factor decreases linearly with
active power [31]. This localized rule was selected due to its
simplicity and because it abides by the German codes [31].

Voltages were obtained through a power flow solver. The
measurement noise was modeled as zero-mean Gaussian with
a 3-sigma deviation matching 0.5% of the actual value. This is
consistent with a study where 99% of the tested meters attained
relative accuracy of less than 0.5% [32]. The schemes were
run using MATLAB on a 2.7 GHz Intel Core i5 (12GB RAM).

First, the Gaussianity of the voltage data was tested through
the Kolmogorov-Smirnov test for various sampling periods
using one-day data from the IEEE 123-bus feeder with signifi-
cance level 0.1. The results are listed in Table II. For the buses
not passing the test, the test can still output the maximum
distance between the sample cumulative distribution function
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Fig. 2. The IEEE 123-bus distribution feeder with nine switches.

TABLE II
KOLMOGOROV-SMIRNOV TEST RESULTS

Ts [min] 5 15 30 60
# of samples T 288 96 48 24
# of buses failing the test 47 3 1 0
dave 0.1132 0.1582 0.2068

(cdf) and the Gaussian cdf. The third row of Table II reports
the average of those distances. Although Table II shows that
the hypothesis on Gaussianity is less accurate for smaller Ts,
the numerical tests shown later demonstrate that the developed
schemes exhibit reasonable performance even for Ts = 5 min.
Having Gaussianity in place, independence is ensured if data
are uncorrelated over time. Figure 3 plots the normalized
autocorrelation function for voltage data at buses 52 and 114
over Ts, which decays fast.

The ML verification schemes of Sec. III were then eval-
uated using 50 Monte Carlo runs and a sampling period
of Ts = 5 min. The actual topologies for both grids were
randomly chosen allowing for both radial and meshed con-
figurations. The covariances Σp, Σq , and Σpq needed for
evaluating gradients were approximated as diagonal matrices
whose diagonal entries were estimated from historical data.
In the first setup, line impedances were known and statuses
were verified under the detailed model by solving (11). In
the second setup, line resistance-to-reactance ratios {α`}`∈Le

were approximated by their average, and line verification was
tackled via (19). Because (11) is non-convex, the solution
found by the PGD iterates of (13) depends on the initialization
b0. The latter was selected as the minimizer of the convex
problem in (19). The solutions to (11) and (19) were projected
onto B by setting them as the mean of independent Bernoulli
distributions used to draw a number of line configurations
from which the feasible one associated with the smallest cost
function is chosen as the selected configuration.

The convex problem in (19) was solved using both the
PGD iterates of (13), and the FW iterates of (21). The non-
convex problem of (11) was solved solely by the PGD scheme,
since the FW iterates are guaranteed to converge only under a
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Fig. 3. Normalized autocorrelation function for voltage data on buses 52 (left)
and 114 (right) computed using one-day data on the IEEE 123-bus feeder.
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Fig. 4. (top) Convergence of the solvers of (19) for the IEEE 37-bus grid;
(bottom) Detection performance after projecting the intermediate iterates.

non-trivial step size selection [33]. The top panel of Fig. 4
shows the convergence of the PGD and FW iterates for a
particular instance of (19) with T = 100. Although solving the
LP is computationally cheaper than the PGD projection, the
execution time in both schemes is dominated by calculating
∇f̃(b). Numerical tests verify that the per-iteration time is
similar for PGD and FW. Although PGD converges faster
overall, the FW iterates exhibit faster initial convergence.
The bottom panel of Fig. 4 shows the number of line status
errors, if the intermediate estimates bkr are used as the mean
vector of a multivariate Bernoulli distribution from which
2,000 samples are drawn and evaluated. The latter indicates a
potential advantage of the FW iterates.

The average running times for solving (11) and (19) reported
in Table III indicate that the ML verification scheme using
the simplified model is roughly seven to ten times faster. All
algorithms here were run till convergence and without the early
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TABLE III
AVERAGE RUNNING TIMES AND STEP SIZES FOR T = 50

IEEE 37-bus IEEE 123-bus
ML and MAP solvers Time [sec] µ Time [sec] µ

PGD solver for (11) 60 0.007 336 0.0005
FW solver for (19) 5 45
PGD solver for (25) 204 0.08 1332 0.001
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Fig. 5. Probability of line status errors for the IEEE 37-bus (top) and the
IEEE 123-bus (bottom) feeders with Ts = 5 min.

stop procedure described earlier.
Our algorithms were compared with a random selection of

an admissible topology, and an adapted version of the scheme
of [8]. The latter computes a pseudo-inverse of the sample
voltage covariance. The grid topology is identified by passing
the signs of the entries in the latter matrix to a spanning
tree algorithm. Since this is an identification scheme and to
make the comparison more fair, we checked only existing lines
(energized or inactive). The scheme was tested only for the
37-bus feeder, because it cannot not handle disjoint feeders.

The average number of line errors for the two feeders is
depicted in Fig. 5. It is worth emphasizing that reliable line
verification can be obtained even for T < N , when the sample
covariance Σ̂ is singular. The performance of the scheme from
[8] is worse than that of a randomly selected topology, since
the covariance matrix is away from its ensemble value and line
impedances have not been exploited. Figure 6 tests the effect
of the data sampling period on the line status error probability
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Fig. 6. Probability of line status errors for the IEEE 37-bus (top) and the
IEEE 123-bus (bottom) feeders for varying sampling periods Ts.
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Fig. 7. True- versus false-positive rates using varying truncation thresholds
for the IEEE 37-bus (left) and 123-bus (right) grids with Ts = 5 min.

achieved by the non-convex ML task of (11). The performance
improves as Ts and the total collection time increase.

The MAP approach of Sec. IV-C was finally tested via
50 Monte Carlo runs. The prior probabilities π` were set
to 0.5 for switches and 0.9 for lines. A stationary point of
(25) was found through the PGD iterates of (26)–(27) after
random initialization within [0,1]. The entries of the PGD
solution were truncated to binary upon thresholding. Varying
the threshold from 0.05 to 0.60 in increments of 0.05 resulted
in detection curves of Fig. 7. The threshold yielding the point
closer to the top-left corner of these plots was used in the MAP
curves of Fig. 5 and the related running times and step sizes are
listed in Table III for T = 50. A direct comparison between the
ML and MAP estimates may not be fair since the latter uses
prior information on lines. The previous tests included both
radial and meshed grid configurations. Table IV reports the
line status error probabilities obtained separately for the two
configuration types, and demonstrates there is no significant
difference in the performance of the developed approaches.
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TABLE IV
LINE STATUS ERROR PROBABILITY FOR THE IEEE 37-BUS GRID WITH

Ts = 5 MIN AND T = 100.

Configuration Radial Meshed

Non-convex ML task of (11) 0.0237 0.0234
Convex ML task of (19) 0.0884 0.0895
Non-convex ML task of (25) 0.0039 0.0047

VI. CONCLUSIONS

Distribution grid topology verification has been posed as
a statistical inference problem. By judiciously expressing the
observed voltage magnitudes as functions of the underlying
grid topology, maximum likelihood and maximum a posteriori
probability detection schemes have been proposed. The novel
learning tasks minimize (non)-convex objectives depending on
the accuracy of the adopted grid data model. Either way, the
optimization is over the non-convex feasible set of active line
configurations that is relaxed to its convex hull. Solvers of
complementary strengths have been devised. Numerical tests
using real data on benchmark feeders demonstrate that our
schemes perform well even when the number of data is smaller
than the network size. Depending on prior information and
load activity, collecting smart meter data over 0.5–3 hours can
verify topologies over a hundred of nodes.

Extending the approach to multiphase grids and dynamically
selecting meters constitute interesting research directions. Se-
tups where voltage data are collected over a subset of buses
and/or in the presence of zero-injection buses are practically
relevant and need to be addressed. Coping with the task of
topology identification where line parameters are unknown too
is practically relevant too. To improve scalability, second-order
(Newton) and/or accelerated optimization techniques could be
pursued. Since data arrive sequentially, the iterates could be
initialized to their most recent value.

APPENDIX

Proof of Lemma 1: The partial derivatives ∂f(b)
∂b`

for ` ∈
Le will be derived using the matrix differentiation rules [34]:

(r1) ∂(XY) = (∂X)Y + X(∂Y);
(r2) ∂(log |X|) = Tr(X−1∂X); and
(r3) ∂(X−1) = −X−1(∂X)X−1.

Rules (r2) and (r3) together with the commutativity property
of the trace provide that

∂f(b)

∂b`
= Tr

(
F(b)

∂Σ(b)

∂b`

)
(28)

where F(b) := Σ−1(b)−Σ−1(b)Σ̂Σ−1(b).
From the definition of Σ(b) in (7) and (r1), it follows

∂Σ(b)

∂b`
=
∂R(b)

∂b`
ΣpR(b) + R(b)Σp

∂R(b)

∂b`

+
∂X(b)

∂b`
ΣqX(b) + X(b)Σq

∂X(b)

∂b`

+
∂R(b)

∂b`
ΣpqX(b) + R(b)Σpq

∂X(b)

∂b`

+
∂X(b)

∂b`
Σ>pqR(b) + X(b)Σ>pq

∂R(b)

∂b`
. (29)

Using again rule (r3) for the matrix inverse differential yields

∂R(b)

∂b`
= − 1

2r`
R(b)a`a

>
` R(b). (30)

A similar expression holds for ∂X(b)
∂b`

. Plugging (29)–(30) into
(28) and exploiting the symmetry of the matrices and the
commutativity of the trace yield the result.

Proof of Lemma 2: It can be easily verified that F(bo) =
0 when Σ̂ = Σ(bo), and therefore, ∇f(bo) = 0 from (14).
Hence, the vector bo is a stationary point of f(bo).

It is next proved that bo is also a global minimizer for
problems (10) and (11). It can be shown that the Kullback-
Leibler divergence between two Gaussian probability density
functions pi(x) = N (0,Σi) for i = 1, 2, with x ∈ RN is
[35, Ex. 2.13]

D(p1||p2) :=

∫
p1(x) log

[
p1(x)

p2(x)

]
dx

=
1

2

[
log
|Σ2|
|Σ1|

−N + Tr(Σ−12 Σ1)

]
.

Recall also that D(p1||p2) ≥ 0. Since Σ(b) � 0 for all b ∈ Br
attaining a finite value, matrix Σ(b) qualifies as a covariance
matrix. Selecting Σ2 to take the parametric form Σ(b) and
fixing Σ1 to the given matrix Σ(bo) � 0, it follows that the
objective in (10) is an affine transformation of D(p1||p2) as
f(b) = 2D(p1||p2)+log |Σ(bo)|+N . Since D(p1||p2) attains
zero only if Σ1 = Σ2, the minimum value of f(b) over all
b ∈ Br is hence achieved at b = bo.

Proof of Lemma 3: By definition of X(b), the matrix
X−1(b) =

∑
`∈Le

b`
x`

a`a
>
` is symmetric positive semi-definite

and depends linearly on b ∈ RL+. Although there exist b
for which the matrix

∑
`∈Le

b`
x`

a`a
>
` becomes singular, these

points are practically avoided while minimizing f̃(b) since the
term −2 log |X−1(b)| tends to infinity.

The negative log-determinant of a positive definite matrix
is known to be a strictly convex function [28]. The convexity
of the second term of f̃(b) stems from the equivalence:

Tr(YΣ−1α YΣ̂) = min
Z

Tr(Z) (31)

s.t.

[
Σ

1/2
α ZΣ

1/2
α YΣ̂1/2

Σ̂1/2Y I

]
� 0

where Σ̂1/2 is the square root of Σ̂ and likewise for Σ
1/2
α .

Recall that although Σα is invertible, the sample covariance
Σ̂ may be singular, for example when T < N .

To prove the equivalence in (31), heed that by Schur’s
complement the constraint yields Σ

1/2
α ZΣ

1/2
α � YΣ̂Y, or

equivalently, Z � Σ
−1/2
α YΣ̂YΣ

−1/2
α . Any feasible Z can

be expressed as Z = Σ
−1/2
α YΣ̂YΣ

−1/2
α + W for some W.

Because Z � Σ
−1/2
α YΣ̂YΣ

−1/2
α , it holds that W � 0. Then,

the trace of Z is strictly larger than Tr(YΣ−1α YΣ̂) unless
W = 0. The equivalence follows since the minimizer of (31)
is Z? = Σ

−1/2
α YΣ̂YΣ

−1/2
α .

The constraint in (31) is a linear matrix inequality
with respect to (Y,Z), and therefore, convex. Function
Tr(YΣ−1α YΣ̂) is convex in Y as the partial minimization
of a jointly convex problem over (Y,Z).
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[1] A. Gómez-Expósito, A. J. Conejo, and C. Canizares, Eds., Electric
Energy Systems, Analysis and Operation. Boca Raton, FL: CRC Press,
2009.

[2] J. E. Tate and T. J. Overbye, “Double line outage detection using phasor
angle measurements,” in Proc. of IEEE Power & Energy Society General
Meeting, Calgary, Alberta, Canada, Jul. 2009.

[3] H. Zhu and G. B. Giannakis, “Sparse overcomplete representations for
efficient identification of power line outages,” IEEE Trans. Power Syst.,
vol. 27, no. 4, pp. 2215–2224, Nov. 2012.

[4] X. Li, V. Poor, and A. Scaglione, “Blind topology identification for
power systems,” in Proc. IEEE Smart Grid Communications Conf.,
Vancouver, BC, Canada, Oct. 2013.

[5] M. He and J. Zhang, “A dependency graph approach for fault detection
and localization towards secure smart grid,” IEEE Trans. Smart Grid,
vol. 2, no. 2, pp. 342–351, Jul. 2011.

[6] V. Kekatos, G. Giannakis, and R. Baldick, “Online energy price matrix
factorization for power grid topology tracking,” IEEE Trans. Smart Grid,
vol. 7, no. 7, pp. 1239–1248, May 2016.

[7] T. Erseghe, S. Tomasin, and A. Vigato, “Topology estimation for
smart micro grids via powerline communications,” IEEE Trans. Signal
Process., vol. 61, no. 13, pp. 3368–3377, Jul. 2013.

[8] S. Bolognani, N. Bof, D. Michelotti, R. Muraro, and L. Schenato, “Iden-
tification of power distribution network topology via voltage correlation
analysis,” in Proc. IEEE Conf. on Decision and Control, Florence, Italy,
Dec. 2013, pp. 1659–1664.

[9] D. Deka, M. Chertkov, and S. Backhaus, “Structure learning in power
distribution networks,” IEEE Trans. Control Netw. Syst., vol. PP, no. 99,
pp. 1–1, 2017.

[10] D. Deka, S. Backhaus, and M. Chertkov, “Tractable structure learning in
radial physical flow networks,” 2016, (submitted). [Online]. Available:
http://arxiv.org/abs/1608.05064

[11] Y. Weng, Y. Liao, and R. Rajagopal, “Distributed energy resources
topology identification via graphical modeling,” IEEE Trans. Power
Syst., 2017, early access.

[12] R. Arghandeh, M. Gahr, A. von Meier, G. Cavraro, M. Ruh, and G. An-
dersson, “Topology detection in microgrids with micro-synchrophasors,”
in Proc. IEEE Power & Energy Society General Meeting, Denver, CO,
Jul. 2015.

[13] G. Cavraro, R. Arghandeh, K. Poolla, and A. von Meier, “Data-driven
approach for distribution network topology detection,” in Proc. IEEE
Power & Energy Society General Meeting, Denver, CO, Jul. 2015.

[14] Y. Liao, Y. Weng, and R. Rajagopal, “Urban distribution grid topology
reconstruction via Lasso,” in Proc. IEEE Power & Energy Society
General Meeting, Boston, MA, Jul. 2016.

[15] Y. Yuan, O. Ardakanian, S. Low, and C. Tomlin, “On the inverse
power flow problem,” Oct. 2016, preprint. [Online]. Available:
https://arxiv.org/abs/1610.06631

[16] M. Baran and F. Wu, “Network reconfiguration in distribution systems
for loss reduction and load balancing,” IEEE Trans. Power Del., vol. 4,
no. 2, pp. 1401–1407, Apr. 1989.

[17] S. Bolognani and F. Dorfler, “Fast power system analysis via implicit
linearization of the power flow manifold,” in Proc. Allerton Conf.,
Allerton, IL, Sep. 2015, pp. 402–409.

[18] C. Godsil and G. Royle, Algebraic Graph Theory. New York, NY:
Springer, 2001.

[19] V. Kekatos, L. Zhang, G. B. Giannakis, and R. Baldick, “Voltage
regulation algorithms for multiphase power distribution grids,” IEEE
Trans. Power Syst., vol. 31, no. 5, pp. 3913–3923, Sep. 2016.

[20] M. Farivar, L. Chen, and S. Low, “Equilibrium and dynamics of local
voltage control in distribution systems,” in Proc. IEEE Conf. on Decision
and Control, Florence, Italy, Dec. 2013, pp. 4329–4334.

[21] L. Gan, N. Li, U. Topcu, and S. Low, “On the exactness of convex
relaxation for optimal power flow in tree networks,” in Proc. IEEE Conf.
on Decision and Control, Maui, HI, Dec. 2012, pp. 465–471.

[22] S. Bolognani and S. Zampieri, “On the existence and linear approxima-
tion of the power flow solution in power distribution networks,” IEEE
Trans. Power Syst., vol. 31, no. 1, pp. 163–172, Jan. 2016.

[23] V. Chernozhukov, D. Chetverikov, and K. Kato, “Central limit theorems
and bootstrap in high dimensions,” 2016, (under review). [Online].
Available: https://arxiv.org/abs/1412.3661

[24] D. P. Bertsekas, Convex Optimization Algorithms. Belmont, MA:
Athena Scientific, 2015.

[25] S. M. Kay, Fundamentals of Statistical Signal Processing, Vol. I:
Estimation Theory. Prentice Hal, 1993.

[26] L. Zhang, V. Kekatos, and G. B. Giannakis, “A generalized Frank-Wolfe
approach to decentralized electric vehicle charging,” in Proc. IEEE Conf.
on Decision and Control, Las Vegas, NV, Dec. 2016.

[27] M. Jaggi, “Revisiting Frank-Wolfe: Projection-free sparse convex opti-
mization,” in Proc. Intl. Conf. on Machine Learning, Atlanta, GA, Jun.
2013, pp. 427–435.

[28] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY:
Cambridge University Press, 2004.

[29] W. H. Kersting, Distribution System Modeling and Analysis. New York,
NY: CRC Press, 2001.

[30] (2013) Pecan Street Inc. Dataport. [Online]. Available: https:
//dataport.pecanstreet.org/

[31] A. Samadi, R. Eriksson, L. Soder, B. G. Rawn, and J. C. Boemer,
“Coordinated active power-dependent voltage regulation in distribution
grids with PV systems,” IEEE Trans. Power Del., vol. 29, no. 3, pp.
1454–1464, Jun. 2014.

[32] EEI-AEIC-UTC. (2011) Smart meters and smart meter systems: A
metering industry perspective. [Online]. Available: http://www.eei.org/
issuesandpolicy/grid-enhancements/Documents/smartmeters.pdf

[33] S. Lacoste-Julien, “Convergence rate of Frank-Wolfe for non-convex
objectives,” 2016, preprint. [Online]. Available: https://arxiv.org/abs/
1607.00345

[34] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge
University Press, 1991.

[35] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY: Springer, 2006.

Guido Cavraro received the B.S. degree in In-
formation Engr., the M.S. degree in Automation
Engineering, and the Ph.D. degree in Information
Engr. from the Univ. of Padova, Italy, in 2008,
2011, and 2015, respectively. In 2015 and 2016, he
was a postdoctoral associate at Information Engr.
Dept. of the Univ. of Padova. He is currently a
postdoctoral associate at the Bradley Dept. of ECE at
Virginia Tech. His current research interests include
identification, control and optimization applied to
power systems and smart grids.

Vassilis Kekatos (SM’16) is an Assistant Professor
of ECE at the Bradley Dept. of ECE at Virginia
Tech. He obtained his Diploma, M.Sc., and Ph.D. in
computer science and engr. from the Univ. of Patras,
Greece, in 2001, 2003, and 2007, respectively. He
was a recipient of the Marie Curie Fellowship during
2009-2012, and a research associate with the ECE
Dept. at the Univ. of Minnesota, where he received
the postdoctoral career development award (honor-
able mention). During 2014, he stayed with the Univ.
of Texas at Austin and the Ohio State Univ. as a

visiting researcher. His research focus is on optimization and learning for
future energy systems. He is currently serving in the editorial board of the
IEEE Trans. on Smart Grid.

Sriharsha Veeramachaneni is a researcher at Wind-
logics Inc., a subsidiary of NextEra Energy Inc.,
specializing in statistics, machine learning and opti-
mization. He holds a Ph.D. in computer engineering
from the Rensselaer Polytechnic Institute.


